Trang chủ > Lớp 9 > Giải Toán 9 > Luyện tập trang 56-57 SGK Toán 9 Tập 2

Luyện tập trang 56-57 SGK Toán 9 Tập 2

Bài 37 trang 56 SGK Toán 9 Tập 2: Giải phương trình trùng phương:

Hướng dẫn giải:

a) 9x4 – 10x2 + 1 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành: 9t2 – 10t + 1 = 0 (2)

Giải (2):

Có a = 9; b = -10; c = 1

⇒ a + b + c = 0

⇒ Phương trình (2) có nghiệm t1 = 1; t2 = c/a = 1/9.

Cả hai nghiệm đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1.


Vậy phương trình (1) có tập nghiệm

b) 5x4 + 2x2 – 16 = 10 – x2

⇔ 5x4 + 2x2 – 16 – 10 + x2 = 0

⇔ 5x4 + 3x2 – 26 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành: 5t2 + 3t – 26 = 0 (2)

Giải (2):

Có a = 5; b = 3; c = -26

⇒ Δ = 32 – 4.5. (-26) = 529 > 0

⇒ Phương trình có hai nghiệm phân biệt

Đối chiếu điều kiện chỉ có t1 = 2 thỏa mãn

+ Với t = 2 ⇒ x2 = 2 ⇒ x = √2 hoặc x = -√2.

Vậy phương trình (1) có tập nghiệm S = {-√2; √2}

c) 0,3x4 + 1,8x2 + 1,5 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó, (1) trở thành: 0,3t2 + 1,8t + 1,5 = 0 (2)

Giải (2):

có a = 0,3; b = 1,8; c = 1,5

⇒ a – b + c = 0

⇒ Phương trình có hai nghiệm t1 = -1 và t2 = -c/a = -5.

Cả hai nghiệm đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

Điều kiện xác định: x ≠ 0.

Quy đồng, khử mẫu ta được:

2x4 + x2 = 1 – 4x2

⇔ 2x4 + x2 + 4x2 – 1 = 0

⇔ 2x4 + 5x2 – 1 = 0 (1)

Đặt t = x2, điều kiện t > 0.

Khi đó (1) trở thành: 2t2 + 5t – 1 = 0 (2)

Giải (2):

Có a = 2; b = 5; c = -1

⇒ Δ = 52 – 4.2. (-1) = 33 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Đối chiếu với điều kiện thấy có nghiệm t1 thỏa mãn.

Vậy phương trình có tập nghiệm

Kiến thức áp dụng:

+ Phương trình có dạng: ax4 + bx2 + c = 0 (a ≠ 0) gọi là phương trình trùng phương.

Cách giải phương trình trùng phương:

Bước 1: Đặt x2 = t; t ≥ 0. Khi đó ta đưa được phương trình ban đầu về phương trình bậc hai ẩn t.

Bước 2: Giải phương trình bậc hai ẩn t, đối chiếu với điều kiện t ≥ 0.

Bước 3: Từ nghiệm t vừa tìm được, ta thay trở lại x2 = t để tìm x và kết luận nghiệm.

+ Giải phương trình chứa ẩn ở mẫu thức:

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng, khử mẫu

Bước 3: Giải phương trình nhận được

Bước 4: Đối chiếu nghiệm thu được với điều kiện xác định và kết luận nghiệm.

Bài 38 trang 56: Giải các phương trình:

Hướng dẫn giải:

a) (x – 3)2 + (x + 4)2 = 23 – 3x

⇔ x2 – 6x + 9 + x2 + 8x + 16 = 23 – 3x

⇔ x2 – 6x + 9 + x2 + 8x + 16 + 3x – 23 = 0

⇔ 2x2 + 5x + 2 = 0

Có a = 2; b = 5; c = 2 ⇒ Δ = 52 – 4.2.2 = 9 > 0

⇒ Phương trình có hai nghiệm:

Vậy phương trình có tập nghiệm

b) x3 + 2x2 – (x – 3)2 = (x – 1)(x2 – 2)

⇔ x3 + 2x2 – (x2 – 6x + 9) = x3 – x2 – 2x + 2

⇔ x3 + 2x2 – x2 + 6x – 9 – x3 + x2 + 2x – 2 = 0

⇔ 2x2 + 8x – 11 = 0.

Có a = 2; b = 8; c = -11 ⇒ Δ’ = 42 – 2. (-11) = 38 > 0

⇒ Phương trình có hai nghiệm:

Vậy phương trình có tập nghiệm

c) (x – 1)3 + 0,5x2 = x (x2 + 1,5)

⇔ x3 - 3x2 + 3x – 1 + 0,5x2 = x3 + 1,5x

⇔ x3 + 1,5x – x3 + 3x2 – 3x + 1 – 0,5x2 = 0

⇔ 2,5x2 – 1,5x + 1 = 0

Có a = 2,5; b = -1,5; c = 1

⇒ Δ = (-1,5)2 – 4.2,5.1 = -7,75 < 0

Vậy phương trình vô nghiệm.

⇔ 2x (x – 7) – 6 = 3x – 2 (x – 4)

⇔ 2x2 – 14x – 6 = 3x – 2x + 8

⇔ 2x2 – 14x – 6 – 3x + 2x – 8 = 0

⇔ 2x2 – 15x – 14 = 0.

Có a = 2; b = -15; c = -14

⇒ Δ = (-15)2 – 4.2. (-14) = 337 > 0

⇒ Phương trình có hai nghiệm:

⇔ 14 = (x – 2)(x + 3)

⇔ 14 = x2 – 2x + 3x – 6

⇔ x2 + x – 20 = 0

Có a = 1; b = 1; c = -20

⇒ Δ = 12 – 4.1. (-20) = 81 > 0

Phương trình có hai nghiệm:

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình có tập nghiệm S = {-5; 4}.

f) Điều kiện: x≠-1; x≠4

Ta có: a= 1, b = -7, c = - 8

∆ = (-7)2 – 4.1. (- 8)= 81

=> Phương trình có hai nghiệm:

Kết hợp với diều kiện, nghiệm của phương trình đã cho là x = 8

Kiến thức áp dụng:

+ Phương trình có dạng: ax4 + bx2 + c = 0 (a ≠ 0) gọi là phương trình trùng phương.

Cách giải phương trình trùng phương:

Bước 1: Đặt x2 = t; t ≥ 0. Khi đó ta đưa được phương trình ban đầu về phương trình bậc hai ẩn t.

Bước 2: Giải phương trình bậc hai ẩn t, đối chiếu với điều kiện t ≥ 0.

Bước 3: Từ nghiệm t vừa tìm được, ta thay trở lại x2 = t để tìm x và kết luận nghiệm.

+ Giải phương trình chứa ẩn ở mẫu thức:

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng, khử mẫu

Bước 3: Giải phương trình nhận được

Bước 4: Đối chiếu nghiệm thu được với điều kiện xác định và kết luận nghiệm.

Bài 39 trang 57: Giải phương trình bằng cách đưa về phương trình tích:

a) (3x2 – 7x – 10). [2x2 + (1 – √5)x + √5 – 3] = 0

b) x3 + 3x2 – 2x – 6 = 0;

c) (x2 – 1)(0,6x + 1) = 0,6x2 + x;

d) (x2 + 2x – 5)2 = (x2 – x + 5)2.

Hướng dẫn giải:

a) (3x2 – 7x – 10). [2x2 + (1 – 5)x + 5 – 3] = 0

+ Giải (1):

3x2 – 7x – 10 = 0

Có a = 3; b = -7; c = -10

⇒ a – b + c = 0

⇒ (1) có hai nghiệm x1 = -1 và x2 = -c/a = 10/3.

+ Giải (2):

2x2 + (1 - √5)x + √5 - 3 = 0

Có a = 2; b = 1 - √5; c = √5 - 3

⇒ a + b + c = 0

⇒ (2) có hai nghiệm:

Vậy phương trình có tập nghiệm

b) x3 + 3x2 – 2x – 6 = 0

⇔ (x3 + 3x2) – (2x + 6) = 0

⇔ x2(x + 3) – 2 (x + 3) = 0

⇔ (x2 – 2)(x + 3) = 0

+ Giải (1): x2 – 2 = 0 ⇔ x2 = 2 ⇔ x = √2 hoặc x = -√2.

+ Giải (2): x + 3 = 0 ⇔ x = -3.

Vậy phương trình có tập nghiệm S = {-3; -√2; √2}

c) (x2 – 1)(0,6x + 1) = 0,6x2 + x

⇔ (x2 – 1)(0,6x + 1) = x. (0,6x + 1)

⇔ (x2 – 1)(0,6x + 1) – x (0,6x + 1) = 0

⇔ (0,6x + 1)(x2 – 1 – x) = 0

+ Giải (1): 0,6x + 1 = 0 ⇔

+ Giải (2):

x2 – x – 1 = 0

Có a = 1; b = -1; c = -1

⇒ Δ = (-1)2 – 4.1. (-1) = 5 > 0

⇒ (2) có hai nghiệm

Vậy phương trình có tập nghiệm

d) (x2 + 2x – 5)2 = (x2 – x + 5)2

⇔ (x2 + 2x – 5)2 – (x2 – x + 5)2 = 0

⇔ [(x2 + 2x – 5) – (x2 – x + 5)]. [(x2 + 2x – 5) + (x2 – x + 5)] = 0

⇔ (3x – 10)(2x2 + x) = 0

⇔ (3x-10).x. (2x+1)=0

+ Giải (1): 3x – 10 = 0 ⇔

+ Giải (2):

Kiến thức áp dụng:

+ Phương trình tích: A (x).B (x).C (x)…. = 0 ⇔

+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm x1 = 1; nghiệm còn lại x2 = c/a.

+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a – b + c = 0 thì phương trình có một nghiệm x1 = -1; nghiệm còn lại x2 = -c/a.

Bài 40 (trang 57): Giải phương trình bằng cách đặt ẩn phụ:

Hướng dẫn:

a) Đặt t = x2 + x, ta có phương trình 3t2 - 2t - 1 = 0. Giải phương trình này, ta tìm được hai giá trị của t. Thay mỗi giá trị của t vừa tìm được vào đẳng thức t = x2 +x, ta được một phương trình của ẩn x. Giải mỗi phương trình này sẽ tìm được giá trị của x.


Bài giải

a) 3. (x2 + x)2 – 2 (x2 + x) – 1 = 0 (1)

Đặt t = x2 + x,

Khi đó (1) trở thành: 3t2 – 2t – 1 = 0 (2)

Giải (2): Có a = 3; b = -2; c = -1

⇒ a + b + c = 0

⇒ (2) có hai nghiệm t1 = 1; t2 = c/a = -1/3.

+ Với t = 1 ⇒ x2 + x = 1 ⇔ x2 + x – 1 = 0 (*)

Có a = 1; b = 1; c = -1 ⇒ Δ = 12 – 4.1. (-1) = 5 > 0

(*) có hai nghiệm

Có a = 3; b = 3; c = 1 ⇒ Δ = 32 – 4.3.1 = -3 < 0

⇒ (**) vô nghiệm.

Vậy phương trình (1) có tập nghiệm

b) (x2 – 4x + 2)2 + x2 – 4x – 4 = 0

⇔ (x2 – 4x + 2)2 + x2 – 4x + 2 – 6 = 0 (1)

Đặt x2 – 4x + 2 = t,

Khi đó (1) trở thành: t2 + t – 6 = 0 (2)

Giải (2): Có a = 1; b = 1; c = -6

⇒ Δ = 12 – 4.1. (-6) = 25 > 0

⇒ (2) có hai nghiệm

+ Với t = 2 ⇒ x2 – 4x + 2 = 2

⇔ x2 – 4x = 0

⇔ x (x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3 ⇒ x2 – 4x + 2 = -3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5 ⇒ Δ’ = (-2)2 – 1.5 = -1 < 0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

Khi đó (1) trở thành: t2 – 6t – 7 = 0 (2)

Giải (2): Có a = 1; b = -6; c = -7

⇒ a – b + c = 0

⇒ (2) có nghiệm t1 = -1; t2 = -c/a = 7.

Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.

+ Với t = 7 ⇒ √ x = 7 ⇔ x = 49 (thỏa mãn).

Vậy phương trình đã cho có nghiệm x = 49.

⇔ t2 – 10 = 3t ⇔ t2 – 3t – 10 = 0 (2)

Giải (2): Có a = 1; b = -3; c = -10

⇒ Δ = (-3)2 - 4.1. (-10) = 49 > 0

⇒ (2) có hai nghiệm:

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình đã cho có tập nghiệm: