Bài 8: Vị trí tương đối của hai đường tròn (tiếp theo) - trang 120 Toán 9 Tập 1
Bài 8: Vị trí tương đối của hai đường tròn (tiếp theo)
Trả lời câu hỏi Toán 9 Tập 1 Bài 8 trang 120: Hãy chứng minh khẳng định trên.
Hướng dẫn giải:
Áp dụng bất đẳng thức tam giác vào tam giác OAO’ ta có:
OA – O’A < OO’ < OA + O’A
⇔ R – r < OO’ < R + r
Trả lời câu hỏi Toán 9 Tập 1 Bài 8 trang 120: Hãy chứng minh các khẳng định trên.
Hướng dẫn giải:
Hình 91: Hai đường tròn tiếp xúc ngoài tại A nên A nằm giữa OO’
⇒ OA + AO’ = OO’ ⇒ R + r = OO’
Hình 92: Hai đường tròn tiếp xúc trong tại A nên O’ nằm giữa O và A
⇒ OO’ + O’A = OA ⇒ OO’ = OA – O’A = R – r
Trả lời câu hỏi Toán 9 Tập 1 Bài 8 trang 122: Quan sát các hình 97a, b, c, d trên hình nào có vẽ tiếp tuyến chung của hai đường tròn? Đọc tên các tiếp tuyến chung đó.
Hướng dẫn giải:
Trả lời: Các tiếp tuyến chung của hai đường tròn là
Hình 97 a) m; d1; d2
Hình 97 b) d1; d2
Hình 97 c) d
Hình 97 d) Không có tiếp tuyến chung của hai đường tròn
Bài 35 (trang 122 SGK Toán 9 Tập 1): Điền vào các ô trống trong bảng, biết rằng hai đường tròn (O; R) và (O'; r) có OO' = d, R > r.
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d, R, r |
---|---|---|
(O; R) đựng (O'; r) | ||
d > R + r | ||
Tiếp xúc ngoài | ||
d = R – r | ||
2 |
Hướng dẫn giải:
Ta có bảng sau:
Vị trí tương đối của hai đường tròn | Số điểm chung | Hệ thức giữa d, R, r |
---|---|---|
(O; R) đựng (O'; r) | 0 | d < R - r |
Ở ngoài nhau | 0 | d > R + r |
Tiếp xúc ngoài | 1 | d = R + r |
Tiếp xúc trong | 1 | d = R – r |
Cắt nhau | 2 | R – r < d < R + r |
Bài 36 (trang 123): Cho đường tròn tâm O bán kính OA và đường tròn đường kính OA.
a) Hãy xác định vị trí tương đối của hai đường tròn.
b) Dây AD của đường tròn lớn cắt đường tròn nhỏ ở C. Chứng minh rằng AC = CD.
Hướng dẫn giải:a) Gọi O’ là tâm của đường tròn đường kính OA.
Gọi R và r lần lượt là bán kính đường tròn tâm O và tâm O’.
Suy ra, hai đường tròn đã cho tiếp xúc trong với nhau.
b) * Xét tam giác ACO có CO’ là đường trung tuyến và
Suy ra, tam giác ACO vuông tại C
⇒ AC ⊥ CO
* Xét tam giác AOD có AO = OD = R
Suy ra tam giác AOD cân tại O.
Lại có OC là đường cao nên đồng thời là đường trung tuyến
⇒ C là trung điểm AD hay AC = CD. (điều phải chứng minh)
Bài 37 (trang 123): Cho hai đường tròn đồng tâm O. Dãy AB của đường tròn lớn cắt đường tròn nhỏ ở C và D. Chứng minh rằng AC = BD.
Hướng dẫn giải:Giả sử vị trí các điểm theo thứ tự là A, C, B, D.
Kẻ OH ⊥ CD. Theo tính chất đường kính vuông góc với một dây ta có:
HA = HB, HC = HD
Nên AC = HA – HC = HB – HD = BD
Vậy AC = BD.
(Trường hợp vị trí các điểm theo thứ tự là A, D, C, B chứng minh tương tự. )