Trang chủ > Lớp 12 > Giải BT Toán 12 nâng cao > Bài 8: Một số bài toán thường gặp về đồ thị - Giải BT Toán 12 nâng cao

Bài 8: Một số bài toán thường gặp về đồ thị - Giải BT Toán 12 nâng cao

Bài 57 (trang 55 sgk Giải Tích 12 nâng cao):

a) Khảo sát sự biến thiên và đồ thị (C) hàm số: f (x)=2x3+3x2+1

b) Tìm các giao điểm của đường cong (C) và parapol g (x) = 2x2+1 (P)

c) Viết Phương trình các tiếp điểm của (C) và (P) tại các điểm của chúng.

d) Xác định các khoảng trên đó (C) nằm phía trên và hoặc phía dưới (P).

Bài giải:

a) Hàm số: f (x) = y=2x3+3x2+1.

TXĐ: D = R

Đạo hàm: y’ = 6x2+6x

Giải bài 57 trang 55 SGK Giải Tích 12 nâng cao ảnh 1

Sự biến thiên

Hàm số đồng biến trong khoảng (-∞; -1) và (0; +∞)

Hàm số nghịch biến trong khoảng (-1; 0)

Cực trị: y= 2 khi x = -1

yCT = 1 khi x = 0

Giải bài 57 trang 55 SGK Giải Tích 12 nâng cao ảnh 2

Điểm uốn, tính lồi lõm:

Ta có y’’ = 12x + 6

y'' = 0 < => 12x+6 = 0 < => x = -1/2 => y = 3/2

Bảng xét dấu

Giải bài 57 trang 55 SGK Giải Tích 12 nâng cao ảnh 3

Bảng biến thiên

Giải bài 57 trang 55 SGK Giải Tích 12 nâng cao ảnh 4

Đồ thị hàm số: f (x) = y = 2x3+3x2+1

Giao điểm Oy: (0; 1)

Đi qua (-1; 2)

Giải bài 57 trang 55 SGK Giải Tích 12 nâng cao ảnh 5

b) Hoành độ giao điểm của đường cong (C) và parabol (P) là nghiệm của phương trình:

f (x) = g (x) < => 2x3+3x2+1 = 2x2+1

Giải bài 57 trang 55 SGK Giải Tích 12 nâng cao ảnh 6

Vậy đường cong C và parabol (P) cắt tại 2 điểm: A (0; 1); B (-1/2; 3/2)

c) Hệ số góc tiếp tuyến tại điểm A của đường cong (C) và parabol (P) là: y’ (0) = 0

=> Phương trình tiếp tuyến tại giao điểm A của đường cong (C) và parabol (P) y = 0 (x- 0)+ 1 hay y = 1

Hệ số số góc tiếp tuyến tại giao điểm B của đường cong (C) và parabol (P) là:

Giải bài 57 trang 55 SGK Giải Tích 12 nâng cao ảnh 7

Vậy Phương trình tiếp tuyến tại giao điểm B của đường cong (C) và parabol (P) là:

Giải bài 57 trang 55 SGK Giải Tích 12 nâng cao ảnh 8

d) Để (C) nằm phía trên (P) thì 2 hàm số f (x) và g (x) phải thõa mãn điều kiện sau:

Giải bài 57 trang 55 SGK Giải Tích 12 nâng cao ảnh 9

Vậy với x > -1/2 và x ≠ 0 thì (C) nằm phía trên (P).

Để (C) nằm phía dưới (P) thì 2 hàm số f (x) và g (x) thỏa mãn điều kiện sau:

Giải bài 57 trang 55 SGK Giải Tích 12 nâng cao ảnh 10

Vậy với x < -1/2 thì (C) nằm phía dưới (P).

Bài 58 (trang 56 sgk Giải Tích 12 nâng cao):

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Giải bài 58 trang 56 SGK Giải Tích 12 nâng cao ảnh 1

b) Với các giá trị nào của m thì (dm) đi qua điểm A (-2; 2) và có hệ số góc m cắt đồ thị của hàm số đã cho.

- Tại 2 điểm phận biệt?

- Tại 2 điểm thuộc 2 nhánh 2 của đồ thị?

Bài giải:
Giải bài 58 trang 56 SGK Giải Tích 12 nâng cao ảnh 1

- Hàm số luôn đồng đồng biến trong khoảng (-∞; -1)và (-1; +∞)

- Hàm số không có cực trị.

Giải bài 58 trang 56 SGK Giải Tích 12 nâng cao ảnh 2

Vậy đồ thị hàm số có tiệm cận đứng là đường thẳng: x = -1.

Giải bài 58 trang 56 SGK Giải Tích 12 nâng cao ảnh 3

Vậy đồ thị hàm số có tiệm cận ngang là đường thẳng: y = 2.

Bảng biến thiên

Giải bài 58 trang 56 SGK Giải Tích 12 nâng cao ảnh 4

Đồ thị hàm số nhận điểm I (-1; 2) là giao điểm của 2 tiệm cận làm tâm đối xứng. Đồ thị đi qua A (0; -1), B (1/2; 0), C (1; 1/2);D (2; 1)

Giải bài 58 trang 56 SGK Giải Tích 12 nâng cao ảnh 5

b) Đường thẳng (dm) qua điểm A (-2; 2) có hệ số góc m là:

y=m (x+2)+2

⇔ y=mx+2m+2

Để (dm) cắt đồ thị (C) tại 2 điểm phân biệt thì phương trình sau phải có 2 nghiệm phân biệt ≠ -1

Giải bài 58 trang 56 SGK Giải Tích 12 nâng cao ảnh 6

⇔ f (x) = mx2 + 3mx + 2m + 3 = 0 và f (-1) ≠ 0 (1)

Giải bài 58 trang 56 SGK Giải Tích 12 nâng cao ảnh 7

Vậy với m ∈ (-∞; 0) và (12, +∞) thì đường thẳng (dm) sẽ cắt đồ thị hàm số (C) tại 2 điểm phân biệt.

- Để (dm) cắt đồ thị hàm số (C) tại 2 điểm thuộc 2 nhánh của đồ thị thì:

x1< -1< x2 hay af (-1)< 0

⇔ m (m (-1)2+3m (-1)+2m+3)< 0 ⇔ 3m< 0 ⇔ m < 0

Vậy với m ∈ (-∞; 0) thì đường thẳng (dm) sẽ cắt đồ thị (C) tại 2 điểm phân biệt ∈ 2 nhánh đồ thị.

Bài 59 (trang 56 sgk Giải Tích 12 nâng cao): Chứng minh rằng các đồ thị của 3 hàm số: f (x) = -x2+3x+6; g (x)=x3-x2+4 và h (x) = x2+7x+8 tiếp xúc với nhau tại điểm A (-1; 2)

Bài giải:

Để đồ thị của 3 hàm số trên tiếp xúc với nhau tại A (-1; 2) thì 3 đồ thị đó có tiếp tuyến chung tại điểm A

⇔ hệ số góc của các tiếp tuyến tại điểm A bằng nhau. Ta có:

+ f’ (x) = -2x+3 ⇒ f' (-1)=5

+ g’ (x) = 3x2-2x ⇒ g' (-1)=5

+ h’ (x) = 2x+7 ⇒ h' (-1)=5

Vậy 3 hàm số trên tiếp xúc với nhau nhau tại A (-1; 2)

Bài 60 (trang 56 sgk Giải Tích 12 nâng cao): Chứng minh rằng các đồ thị của hai hàm số

Giải bài 60 trang 56 SGK Giải Tích 12 nâng cao ảnh 1

tiếp xúc với nhau. Xác định tiếp tuyến của 2 đường cong trên và viết Phương trình tiếp tuyến chung của chúng tại điểm đó.

Bài giải:

Hai hàm số f (x) và g (x) tiếp xúc với nhau khi và chỉ khi hệ phương trình sau có nghiệm:

Giải bài 60 trang 56 SGK Giải Tích 12 nâng cao ảnh 1

Vậy 2 đường cong trên cắt nhau tại M (0; 0)

Phương trình tiếp tuyến chung của f (x) và g (x) có hệ số góc k là: k = f’ (0) = 3/2

Vậy Phương trình tiếp tuyến chung của f (x) và g (x) là: y=3x/2

Bài 61 (trang 56 sgk Giải Tích 12 nâng cao): Một viên đạn được bắn ra với vận tốc ban đầu v0 > 0 từ một nòng súng đặt ở gốc tọa độ O, nghiêng một góc α với mặt đất (nòng súng nằm trong mặt phẳng đứng thẳng Oxy và tạo với trục hoành Ox một góc α. Biết quỹ đạo chuyển động của viên đạn là parabol.

Giải bài 61 trang 56 SGK Giải Tích 12 nâng cao ảnh 1

g là gia tốc trọng trường.

chứng minh rằng với mọi α ∈ (0; π /2) γ α luôn tiếp xúc với parabol (C) có phương trình là

Giải bài 61 trang 56 SGK Giải Tích 12 nâng cao ảnh 2

và tìm tọa độ điểm (C) được gọi là parabol an toàn.

Bài giải:
Giải bài 61 trang 56 SGK Giải Tích 12 nâng cao ảnh 1

Tọa độ giao điểm M của (γα) và (C) là nghiệm của hệ phương trình sau:

Giải bài 61 trang 56 SGK Giải Tích 12 nâng cao ảnh 2

Giải (2)

Giải bài 61 trang 56 SGK Giải Tích 12 nâng cao ảnh 3

Thế vào (1) ta thấy thõa mãn.

⇒ Tiếp điểm M có tọa độ:

Giải bài 61 trang 56 SGK Giải Tích 12 nâng cao ảnh 4