Trang chủ > Lớp 12 > Giải BT Toán 12 nâng cao > Bài 1: Nguyên hàm - Giải BT Toán 12 nâng cao

Bài 1: Nguyên hàm - Giải BT Toán 12 nâng cao

Bài 1 (trang 141 sgk Giải Tích 12 nâng cao): Tìm nguyên hàm của các hàm số sau:

Giải bài 1 trang 141 SGK Giải Tích 12 nâng cao ảnh 1

Bài giải:

Giải bài 1 trang 141 SGK Giải Tích 12 nâng cao ảnh 1

Bài 2 (trang 141): Tìm:

Giải bài 2 trang 141 SGK Giải Tích 12 nâng cao ảnh 1

Bài giải:

Giải bài 2 trang 141 SGK Giải Tích 12 nâng cao ảnh 1
Giải bài 2 trang 141 SGK Giải Tích 12 nâng cao ảnh 2

Bài 3 (trang 141): Chọn khẳng định đúng trong các khẳng định sau:

Nguyên hàm của hàm số y = x. sin x là:

A. x2 sin⁡ (x/2)+C

B. -xcos x +C

C. -x. cosx+sinx+C

Bài giải:

Xét phương án C ta có:

(-x. cosx + sinx + C)’ = - (x. cosx)’ + (sinx)’ + C’ = - [1. cosx +x. (– sinx)] + cosx = x. sinx

Do đó nguyên hàm của hàm số y = x. sinx là F (x) = - x. cosx + sinx + C.

Đáp án đúng là: C.

Bài 4 (trang 141): Khẳng định sau đúng hay sai:

Nếu f (x) = (1-√ x)' thì ∫f (x) dx = -√ x + C

Bài giải:

Khẳng định trên là đúng. Vì f (x) = (1-√ x)' = (-√ x)'