Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn - trang 163 Sách bài tập Toán 9 Tập 1
Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 42 trang 163 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Dùng thước và compa, hãy dựng các điểm B và C thuộc đường tròn (O) sao cho AB và AC là các tiếp tuyến của đường tròn (O).
Bài giải:* Phân tích:
Giả sử tiếp tuyến AB và AC cần dựng thỏa mãn điều kiện bài toán
Ta có: AB ⊥ OB ⇒
AC ⊥ OC ⇒
Tam giác ABO có
Suy ra B và C là giao điểm của đường tròn đường kính AO với đường tròn (O).
* Cách dựng:
- Dựng I là trung điểm của OA
- Dựng đường tròn (I; IO) cắt đường tròn (O) tại B và C
- Nối AB, AC ta được hai tiếp tuyến cần dựng
* Chứng minh:
Tam giác ABO nội tiếp trong đường tròn (I) có OA là đường kính nên: IMG_1 = 90o
Suy ra: AB ⊥ OB tại B nên AB là tiếp tuyến của đường tròn (O)
Tam giác ACO nội tiếp trong đường tròn (I) có OA là đường kính nên: IMG_2 = 90o
Suy ra: AC ⊥ OC tại C nên AC là tiếp tuyến của đường tròn (O)
* Biện luận:
Luôn dựng được đường tròn tâm I, cắt đường tròn tâm O tại hai điểm B và C và luôn có AB, AC là hai tiếp tuyến của đường tròn (O).
Bài 43 trang 163 Sách bài tập Toán 9 Tập 1: Cho điểm A nằm trên đường thẳng d, điểm B nằm ngoài đường thẳng d. Dựng đường tròn (O) đi qua A và B nhận đường thẳng d làm tiếp tuyến.
Bài giải:* Phân tích:
- Giả sử dựng được đường tròn (O) qua A, B và tiếp xúc với d. Khi đó đường tròn (O) phải tiếp xúc với d tại A
- Đường tròn (O) đi qua A và B nên tâm O nằm trên đường trung trực của AB
- Đường tròn (O) tiếp xúc với d tại A nên điểm O nằm trên đường thẳng vuông góc với d tại điểm A
* Cách dựng:
- Dựng đường thẳng trung trực của AB
- Dựng đường thẳng đi qua A và vuông góc với d. Đường thẳng này cắt đường trung trực của AB tại O
- Dựng đường tròn (O; OA) ta được đường tròn cần dựng
* Chứng minh:
Vì O nằm trên đường trung trực của AB nên OA = OB. Khi đó đường tròn (O; OA) đi qua hai điểm A và B
Ta có: OA vuông góc với d tại A nên d là tiếp tuyến của (O)
Vậy (O) thỏa mãn điều kiện bài toán.
Bài 44 trang 163 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC vuông tại A. Vẽ đường tròn (B; BA) và đường tròn (C; CA), chúng cắt nhau tại điểm D (khác A). Chứng minh rằng CD là tiếp tuyến của đường tròn (B).
Bài giải:Xét hai tam giác ABC và DBC, ta có:
BA = BD (bán kính của (B; BA))
CA = CD (bán kính của (C; CA))
BC chung
Suy ra: Δ ABC = Δ DBC (c. c. c)
Suy ra: CD ⊥ BD tại D
Vậy CD là tiếp tuyến của đường tròn (B; BA)
Bài 45 trang 163 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H. Vẽ đường tròn (O) có đường kính AH. Chứng minh rằng:
a. Điểm E nằm trên đường tròn (O).
b. DE là tiếp tuyến của đường tròn (O).
Bài giải:a. Gọi O là trung điểm của AH
Tam giác AEH vuông tại E có EO là đường trung tuyến nên:
EO = OA = OH = AH/2 (tính chất tam giác vuông)
Vậy điểm E nằm trên đường tròn (O; AH/2)
b. Ta có: OH = OE
Suy ra tam giác OHE cân tại O
Trong tam giác BDH ta có:
Từ (1), (2) và (3) suy ra:
Tam giác ABC cân tại A có AD ⊥ BC nên BD = CD
Tam giác BCE vuông tại E có ED là đường trung tuyến nên:
ED = DB = BC/2 (tính chất tam giác vuông)
Suy ra tam giác BDE cân tại D
Suy ra: DE ⊥ EO. Vậy DE là tiếp tuyến của đường tròn (O).
Bài 46 trang 163 Sách bài tập Toán 9 Tập 1: Cho góc nhọn xOy, điểm A thuộc tia Ox. Dựng đường tròn tâm I tiếp xúc với Ox tại A và có tâm I nằm trên Oy.
Bài giải:* Phân tích:
Giả sử đường tròn tâm I dựng được thỏa mãn điều kiện bài toán.
- Đường tròn tâm I tiếp xúc với Ox tại A nên I nằm trên đường thẳng vuông góc với Ox kẻ từ A
- Tâm I nằm trên tia Oy nên I là giao điểm của Oy và đường thẳng vuông góc với Ox tại A
* Cách dựng:
- Dựng đường vuông góc với Ox tại A cắt Oy tại I
- Dựng đường tròn (I; IA)
* Chứng minh:
Ta có: I thuộc Oy; OA ⊥ IA tại A
Suy ra Ox là tiếp tuyến của đường tròn (I; IA) hay (I; IA) tiếp xúc với Ox.
* Biện luận:
Vì góc (xOy) là góc nhọn nên đường thẳng vuông góc với Ox tại A luôn cắt tia Oy nên tâm I luôn xác định và duy nhất.
Bài 47 trang 163 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O) và đường thẳng d không giao nhau. Dựng tiếp tuyến của đường tròn (O) sao cho tiếp tuyến đó song song với d
Bài giải:* Phân tích:
Giả sử tiếp tuyến của đường tròn dựng được thỏa mãn điều kiện bài toán
- d1 là tiếp tuyến của đường tròn tại A nên d1 ⊥ OA
- Vì d1 // d nên d ⊥ OA
Vậy A là giao điểm của đường thẳng kẻ từ O vuông góc với d
* Cách dựng:
- Dựng OH vuông góc với d cắt đường tròn (O) tại A và B
- Dựng đường thẳng d1 đi qua A và vuông góc với OA
- Dựng đường thẳng d2 đi qua B và vuông góc với OB
Khi đó d1 và d2 là hai tiếp tuyến cần dựng.
* Chứng minh:
Ta có: A và B thuộc (O)
d1 // d mà d ⊥ OH nên d1 ⊥ OH hay d1 ⊥ OA tại A
Suy ra d1 là tiếp tuyến của đường tròn (O)
d2 // d mà d ⊥ OH nên d2 ⊥ OH hay d2 ⊥ OB tại B
Suy ra d2 là tiếp tuyến của đường tròn (O)
* Biện luận:
Đường thẳng OH luôn cắt đường tròn (O) nên giao điểm A và B luôn dựng được.
Bài 1 trang 164 Sách bài tập Toán 9 Tập 1: Xét tính đúng – sai của mỗi khẳng định sau:
a) Nếu đường thẳng d tiếp xúc với đường tròn (O) tại A thì d vuông góc với OA.
b) Nếu đường thẳng d vuông góc với bán kính OA của đường tròn (O) thì d là tiếp tuyến của đường tròn.
Bài giải:a) Khẳng định trên là đúng;
b) Khẳng định trên là sai.
Bài 2 trang 164 Sách bài tập Toán 9 Tập 1: Cho đường tròn (O) đường kính AB, dây CD vuông góc với OA tại trung điểm của OA. Gọi M là điểm đối xứng với O qua A. Chứng minh rằng MC là tiếp tuyến của đường tròn.
Bài giải:CD là đường trung trực của OA nên CA = CO.
Suy ra CA = CO = AO = AM.
Do đó ∠ (MCO) = 90o.
Vậy MC là tiếp tuyến của đường tròn (O).
Bài trước: Bài 4: Vị trí tương đối của đường thẳng và đường tròn - trang 162 Sách bài tập Toán 9 Tập 1 Bài tiếp: Bài 6: Tính chất của hai tiếp tuyến cắt nhau - trang 164 Sách bài tập Toán 9 Tập 1